悟空视频

    在线播放云盘网盘BT下载影视图书

    Deep Learning on Graphs - 图书

    2021
    导演:Yao Ma
    Deep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applic...(展开全部)
    Deep Learning on Graphs
    图书

    Deep Reinforcement Learning Hands-On - 图书

    2018科学技术·工业技术
    导演:Maxim Lapan
    Recent developments in reinforcement learning (RL), combined with deep learning (DL), have seen unprecedented progress made towards training agents to solve complex problems in a human-like way. Google’s use of algorithms to play and defeat the well-known Atari arcade games has propelled the field to prominence, and researchers are generating new ideas at a rapid pace. Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on ‘grid world’ environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.
    Deep Reinforcement Learning Hands-On
    搜索《Deep Reinforcement Learning Hands-On》
    图书

    PyTorch Deep Learning Hands-On - 图书

    2019科学技术·工业技术
    导演:Sherin Thomas Sudhanshu Passi
    PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you most if you want to get your hands dirty and put PyTorch to work quickly.PyTorch Deep Learning Hands-On shows how to implement the major deep learning architectures in PyTorch. It covers neural networks, computer vision, CNNs, natural language processing (RNN), GANs, and reinforcement learning. You will also build deep learning workflows with the PyTorch framework, migrate models built in Python to highly efficient TorchScript, and deploy to production using the most sophisticated available tools.Each chapter focuses on a different area of deep learning. Chapters start with a refresher on how the model works, before sharing the code you need to implement them in PyTorch.This book is ideal if you want to rapidly add PyTorch to your deep learning toolset.
    PyTorch Deep Learning Hands-On
    搜索《PyTorch Deep Learning Hands-On》
    图书

    Deep Learning - 图书

    导演:Ian Goodfellow
    Deep Learning ist eine Form des Machine Learnings, die Computer in die Lage versetzt, aus Erfahrungen zu lernen und so die Welt als miteinander verbundene Ansammlung von hierarchischen Konzepten zu begreifen. Da der Computer Wissen aus der eigenen Erfahrung sammelt, muss kein Mensch mehr alle benötigten Kenntnisse formal eingeben. Die Hierarchie der Konzepte ermöglicht dem Comp...(展开全部)
    Deep Learning
    搜索《Deep Learning》
    图书

    Hands-On Mathematics for Deep Learning - 图书

    2020计算机·数据库
    导演:Jay Dawani
    Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models.You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application.By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
    Hands-On Mathematics for Deep Learning
    搜索《Hands-On Mathematics for Deep Learning》
    图书

    Hands-On Deep Learning for Games - 图书

    2019计算机·数据库
    导演:Micheal Lanham
    The number of applications of deep learning and neural networks has multiplied in the last couple of years. Neural nets has enabled significant breakthroughs in everything from computer vision, voice generation, voice recognition and self-driving cars. Game development is also a key area where these techniques are being applied. This book will give an in depth view of the potential of deep learning and neural networks in game development. We will take a look at the foundations of multi-layer perceptron’s to using convolutional and recurrent networks. In applications from GANs that create music or textures to self-driving cars and chatbots. Then we introduce deep reinforcement learning through the multi-armed bandit problem and other OpenAI Gym environments.As we progress through the book we will gain insights about DRL techniques such as Motivated Reinforcement Learning with Curiosity and Curriculum Learning. We also take a closer look at deep reinforcement learning and in particular the Unity ML-Agents toolkit. By the end of the book, we will look at how to apply DRL and the ML-Agents toolkit to enhance, test and automate your games or simulations. Finally, we will cover your possible next steps and possible areas for future learning.
    Hands-On Deep Learning for Games
    搜索《Hands-On Deep Learning for Games》
    图书

    Hands-On Deep Learning with Go - 图书

    2019科学技术·工业技术
    导演:Gareth Seneque Darrell Chua
    Go is an open source programming language designed by Google for handling large-scale projects efficiently. The Go ecosystem comprises some really powerful deep learning tools such as DQN and CUDA. With this book, you'll be able to use these tools to train and deploy scalable deep learning models from scratch. This deep learning book begins by introducing you to a variety of tools and libraries available in Go. It then takes you through building neural networks, including activation functions and the learning algorithms that make neural networks tick. In addition to this, you'll learn how to build advanced architectures such as autoencoders, restricted Boltzmann machines (RBMs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. You'll also understand how you can scale model deployments on the AWS cloud infrastructure for training and inference. By the end of this book, you'll have mastered the art of building, training, and deploying deep learning models in Go to solve real-world problems.
    Hands-On Deep Learning with Go
    搜索《Hands-On Deep Learning with Go》
    图书

    Hands-On Deep Learning for Games - 图书

    2019计算机·数据库
    导演:Micheal Lanham
    The number of applications of deep learning and neural networks has multiplied in the last couple of years. Neural nets has enabled significant breakthroughs in everything from computer vision, voice generation, voice recognition and self-driving cars. Game development is also a key area where these techniques are being applied. This book will give an in depth view of the potential of deep learning and neural networks in game development. We will take a look at the foundations of multi-layer perceptron’s to using convolutional and recurrent networks. In applications from GANs that create music or textures to self-driving cars and chatbots. Then we introduce deep reinforcement learning through the multi-armed bandit problem and other OpenAI Gym environments.As we progress through the book we will gain insights about DRL techniques such as Motivated Reinforcement Learning with Curiosity and Curriculum Learning. We also take a closer look at deep reinforcement learning and in particular the Unity ML-Agents toolkit. By the end of the book, we will look at how to apply DRL and the ML-Agents toolkit to enhance, test and automate your games or simulations. Finally, we will cover your possible next steps and possible areas for future learning.
    Hands-On Deep Learning for Games
    搜索《Hands-On Deep Learning for Games》
    图书

    Python Deep Learning - 图书

    2017计算机·编程设计
    导演:Valentino Zocca Gianmario Spacagna Daniel Slater Peter Roelants
    This book is for Data Science practitioners as well as aspirants who have a basic foundational understanding of Machine Learning concepts and some programming experience with Python. A mathematical background with a conceptual understanding of calculus and statistics is also desired.
    Python Deep Learning
    搜索《Python Deep Learning》
    图书

    Understanding Deep Learning - 图书

    导演:Simon J. D. Prince
    An authoritative, accessible, and up-to-date treatment of deep learning that strikes a pragmatic middle ground between theory and practice. Deep learning is a fast-moving field with sweeping relevance in today's increasingly digital world. Understanding Deep Learning provides an authoritative, accessible, and up-to-date treatment of the subject, covering all the key topics alon...(展开全部)
    Understanding Deep Learning
    搜索《Understanding Deep Learning》
    图书
    加载中...